

In-line ice cream overrun measurement

Process instrumentation and measurement solutions for the food industry

measure the facts

Overrun measurement

Stabilisation

Startup process

Solution proposed by Krohne

- Perform an in-line density measurement using a Coriolis flow meter on the frozen ice cream
- Combine it with a temperature and a pressure measurements
- Correlate these three measurements with the ice cream overrun

Benefits:

- Faster start-up
- Less waste or rework ice cream
- More consistent product

measure the facts

Coriolis measurement Principle

Coriolis measurement

Entrained Gas Management (EGM[™])

Diagrams represent effect of full, empty and entrained gas

- Signal attenuation
- Rapid changes
- Synthesized drive control to maintain a signal with 2 phases
- Signal digitalized inside the sensor to account for fast changes of frequency

Coriolis measurement

Immune to 2-phase flow enabled by EGM[™]

Converter: enabler of EGM[™] by synthesized drive control - superior density measurement

Accuracy depends on the 2 phase flow pattern:

- Air volume fraction
- Density of continuous phase
- Morphology of the dispersed phase
- Viscosity of the continuous phase

> measure the facts

Overrun measurement

In-line **Density**, **Pressure** and **Temperature** to be correlated with the off-line **Density**

Density of ice cream

Ice cream is a <u>3 phases</u> system:

- Solid: Ice
- Liquid: Matrix = cream mix, sugar, fat -
- Gaz: Air -

 $\rho_{ice} = f(T)$ Viscous media $\rho_{air} = f(P)$

Density of ice cream is a combination of density of each phase:

 $\rho_{\text{ice cream}} = X_{\text{v air}} \rho_{\text{air}} + X_{\text{v mix}} \rho_{\text{mix}} + X_{\text{v ice }} \rho_{\text{ice}}$

ρ_{ice cream} = f (Pressure, Temperature, Overrun)

KROHNE

Enyu Guo et al. RSC Adv 2017

> measure the facts

Pressure effect

> measure the facts

Combined effects of temperature and pressure

 $\rho_{\text{offline}} = a \rho_{\text{inline}} + b$

a and **b** are both functions of P and T

Offline density (g/cm3)

measure the facts

Setting a correlation

By correlating the measured density in temperature and pressure, the off-line density, and then Overrun, can be predicted within an accuracy of 5%

Thank you for attention !

